MHC v2.0

Mark Roberts Motion Control

QUICK START GUIDE

Product code: MRMC-1503-20
MHC (Studio) v2.0 Quick Start Guide

Product code: MRMC-1503-20

© 2017 Mark Roberts Motion Control Ltd. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated by any means — graphical, electronic, or mechanical — including photocopying, recording, taping, or storage in an information retrieval system, without the express written permission of Mark Roberts Motion Control.

Although every care has been taken to ensure that the information in this document is accurate and up to date, Mark Roberts Motion Control continuously strives to improve their products and may make changes to the hardware, firmware, and software described in this document. Mark Roberts Motion Control therefore cannot be held responsible for any error or omission in this document.

All product names mentioned herein are the trademarks or registered trademarks of their respective owners.

<table>
<thead>
<tr>
<th>Contact information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark Roberts Motion Control Ltd.</td>
</tr>
<tr>
<td>Unit 3, South East Studios</td>
</tr>
<tr>
<td>Blindley Heath</td>
</tr>
<tr>
<td>Surrey</td>
</tr>
<tr>
<td>RH7 6JP</td>
</tr>
<tr>
<td>United Kingdom</td>
</tr>
<tr>
<td>Telephone: +44 (0) 1342 838000</td>
</tr>
<tr>
<td>E-mail: info@mrmoco.com (sales and general enquiries)</td>
</tr>
<tr>
<td>support@mrmoco.com (customer support)</td>
</tr>
<tr>
<td>Web: www.mrmoco.com</td>
</tr>
<tr>
<td>www.mrmocorentals.com</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Chapter 1</th>
<th>Getting Started with MHC .. 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MHC Overview .. 1</td>
</tr>
<tr>
<td></td>
<td>Powering up a head and the PC .. 2</td>
</tr>
<tr>
<td></td>
<td>Home Zeroing – AFC ... 3</td>
</tr>
<tr>
<td></td>
<td>Homing when changing lenses ... 4</td>
</tr>
<tr>
<td></td>
<td>Changing system configuration and network settings 5</td>
</tr>
<tr>
<td></td>
<td>Launching MHC as Admin .. 5</td>
</tr>
<tr>
<td></td>
<td>Network setup ... 6</td>
</tr>
<tr>
<td></td>
<td>Adding heads ... 6</td>
</tr>
<tr>
<td></td>
<td>Adding heads by using FIND ... 7</td>
</tr>
<tr>
<td></td>
<td>Adding heads manually .. 7</td>
</tr>
<tr>
<td></td>
<td>Changing a head’s name ... 8</td>
</tr>
<tr>
<td></td>
<td>Assigning heads to user(s) .. 8</td>
</tr>
<tr>
<td></td>
<td>Removing a head .. 8</td>
</tr>
<tr>
<td></td>
<td>Editing network settings on the head 8</td>
</tr>
<tr>
<td></td>
<td>Adding users ... 9</td>
</tr>
<tr>
<td></td>
<td>Changing the Server IP address .. 10</td>
</tr>
<tr>
<td></td>
<td>Logging in as a User ... 10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 2</th>
<th>Main page ... 11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Using the Main page .. 11</td>
</tr>
<tr>
<td></td>
<td>Home button ... 11</td>
</tr>
<tr>
<td></td>
<td>Settings menu .. 11</td>
</tr>
<tr>
<td></td>
<td>Head selection .. 12</td>
</tr>
<tr>
<td></td>
<td>Selecting a head .. 12</td>
</tr>
<tr>
<td></td>
<td>Presets ... 13</td>
</tr>
<tr>
<td></td>
<td>Storing a position as a preset .. 13</td>
</tr>
<tr>
<td></td>
<td>Activating a preset .. 13</td>
</tr>
<tr>
<td></td>
<td>Editing a preset button ... 14</td>
</tr>
<tr>
<td></td>
<td>Moves .. 14</td>
</tr>
<tr>
<td></td>
<td>Activating a move .. 15</td>
</tr>
</tbody>
</table>
Chapter 3 Robot Settings Page ... 17

Selecting different robots ... 17
Axes tab .. 18
 Motion settings ... 18
 Speed limits ... 18
 Soft limits (Min-Max Positions) ... 18
 Change of Acceleration ... 19
 Scaling and direction .. 19
 Backlash offset .. 19
 Override and restore limits ... 19
 Change of Deceleration ... 20
Homing settings .. 20
 Basic principle .. 20
Types of Homing .. 20
 Homing Style .. 21
 Homing Velocity .. 21
 Homing Time .. 21
 Homing Offset .. 21
Enabling and disabling the axis .. 22
 Stopping the head ... 22
 Test the axis with manual control .. 22
Motor settings .. 22
 Save and apply settings to the head .. 22
Lens tab .. 23
 Linearise Zoom button .. 23
 Importing lens settings .. 24
 Exporting lens settings .. 24
 Infinity offset .. 25
 Lens Focal Length .. 25
 Sensor Width and Height ... 25
 Use Pan to Calibrate FOV ... 26
 Focus calibration .. 26
 Zoom linearisation .. 27
Polycam system .. 28
 Polycam* tab .. 29
 Source .. 29
 Master Head .. 29
 Pitch length and Pitch width ... 29
 Height Offset ... 30
 PID controller settings ... 30
Head settings .. 30
IP settings of the source ... 30
Set A and B points ... 30
Tools tab ... 31
Tools tab for Pods .. 32
EXPORT ROBOT SETTINGS ... 32
Reset Robot ... 33
IMPORT ROBOT SETTINGS ... 33
Reset Camera (Pod only) ... 33
Camera Direct Connection Toggle (Pod only) 33
TenPin Init (Pod only) ... 33

Chapter 4 Preferences Page ... 35
Controlling axes’ speed ... 35
Max. Limit and Min. Limit ... 35
Goto Speed ... 36
Invert ... 36

Appendix 1 Troubleshooting ... 37
Typical symptoms, causes, and actions 37

Appendix 2 LiveView Setup .. 39
MHC Video Feed on Pods ... 39
Setting up LiveView on AFC 100 39

Appendix 3 Controller Options 41
MRMC USB Joystick Controller 41
Xbox 360 Controller .. 42
Broadcast Panel controls ... 43
Joystick Panel ... 44

Appendix 4 Glossary ... 45
Chapter 1 **Getting Started with MHC**

MHC Overview

Multi-Head Controller, or MHC, is software by Mark Roberts Motion Control used to control the MRMC camera heads via Ethernet. MHC is a robust software tool designed for day-in, day-out use in professional studio and external broadcast environment.

MHC software platform designed for user simplicity. It gives you a smooth, precise and real-time control over a multitude of MRMC robotic heads at the touch of a button from a single workstation. You can also connect additional controls via USB, such as a Joystick Controller, to the PC running MHC.

MHC has the following features:

- Homing of head axes and lens motors
- Set soft limits – To limit movement ranges of the axes
- Axes scaling
- Store moves or presets - You can store up to 16 static head “preset” positions (including lens settings) and go to any preset position at the touch of a button.
- Add and assign heads to different users – You can add users and assign them to specific head(s) giving each user better control of the camera heads that they need to use. Each user can be assigned up to 12 heads.
- Allows two login types, Admin and User.
- Change camera source – Change the movement of the head to be guided by an external source.

The MHC application has two components: MHC server and MHC Client. MHC Server is a program that provides services to another program called MHC client on the network. The MHC Server acts as bridge between the MHC Client and the heads. You launch the MHC Server first and the MHC Client, which can run on the same or different PCs.
Note

MHC is configured by MRMC for the type and number of heads, the lens motors used and the lens types as delivered. This includes network settings and names for each head, configuring homing for each robot axes and lens motors (if supplied), setting the axes soft limits and scaling for the heads supplied. These setting do not need to be changed. This Quick Start Guide details the changes to the settings that can be made by the Administrator and the User, if needed.

For more information on how to change network settings, refer to Changing system configuration and network settings on page 5. For more information on how to change robot settings, refer to Chapter 3 Robot Settings Page.

Powering up a head and the PC

1. Cable together and power up one head including camera and lens motors.

2. Power up the PC. Both the MHC Server and Client applications are started. The MHC Main page appears.

For a complete description of the controls on Main page, refer to Chapter 2 Main page.
Observe that the cabled head appears as green tab on the top indicating that it is connected over the network.

3. Cable together and power up the remaining heads. They will appear on MHC connected, as light-grey tabs.

Home Zeroing – AFC

After powering up, you need to Home the head and any lens axes, also called **Home Zeroing** the axes. The process of Home Zeroing involves moving each axis to a known position and referencing the software to this position. This position is usually set to zero and can include an offset adjustable by the User.

The zero points themselves are not stored in the head or lens when the power is off, so you need to define them at the start of each session, by Home Zeroing the axes. The MHC software physically moves the axes to the home positions that are built into the hardware and then assigns these positions as the zero points for the axes.

The method of Home Zeroing depends on the hardware setup and is pre-configured by MRMC. It will usually be the automatic method. For more information on Homing, refer to Chapter 3 *Robot Settings Page*. It is not necessary for you to change these settings.
To home the Pan and Tilt axes, click/tap the Home () button on the Main page. If you have external motors for Zoom and Focus axes, use the following steps to home them individually:

1. Use the > Robot > Axes tab to Home each axis. Select the axis you want to Home at the top of the page.
 - Ensure that the values in the Minimum and Maximum Position, and Homing Type are correct for the lens on the head for the axes you are homing. This is done automatically for Zoom with end stops (Homing type: Lens). The Focus is normally Homing type: Slip.
 - Check that the Status of the axis is ON in the grey box. If it is not, click the ENABLE button to turn it on.

2. Click/tap the HOME button to home the selected axis.

Homing when changing lenses

The values for the Minimum and Maximum Position must be entered for the lens fitted to the head. It is a good idea to label each lens with the Minimum and Maximum Position for Focus axis.

Important

During homing of the Focus axis, the lens ring is driven to each end of the travel. Ensure that the lens motors are sufficiently tight on their matte bars and remain in mesh with the lens gear.
Changing system configuration and network settings

Launching MHC as Admin

To change any network setting, you need to be logged in to the MHC Client as the Administrator.

1. Log out of the User login.
2. Log in to the MHC client as Administrator using the following credentials:
 - Username: Admin
 - Password: Admin1234

Note
At any time, if you need to restart MHC, perform the following steps:

1. Close the MHC Client and the MHC Server windows.
2. Double-click or tap the MHC Server desktop icon to launch it.
3. Double-click or tap the MHC Client icon to launch it. The MHC Client can be launched on the same or a different computer present on the same network.
Network setup

When you log in as the Administrator, the NETWORK SETUP page launches and provides a general overview of all the heads linked to the system’s network. The two row colours represent the status of the heads:

- **Green**: The head is connected and ready to operate.
- **Grey**: The head with the IP address is not connected with the system’s network or is not powered up.

Adding heads

MHC allows you to add heads in two ways:

Note

You can click the Settings () button to display the Settings menu. The tabs in the menu are:

- **Network** – Settings regarding connected/connecting heads
- **User** – Add/change user accounts

The Settings menu is different for Administrator and User login. For more information on Settings menu for the User login, go to Settings menu on page 11.
Adding heads by using FIND

You can click the FIND button to automatically find the connected head(s). This will appear in a new row. Select the head’s row that you want to connect to and click the appearing ADD button. This will connect the head to the system, and move it to the group of the connected heads (the green section).

Adding heads manually

Alternatively, if your head is not present at the time and will be connected later, you can add the head by manually typing its IP address. If you know the IP address of the head you want to add, you can use the NEW button, then enter the IP address, and click ADD NEW.

Then, enter the TYPE of head and a NAME for it. The row for the head stays grey until the head is actually present on the network.

Caution

Do not connect a head with the same IP address as another head on the network. This would cause an IP address conflict and both heads will not function.
Changing a head’s name

You can change the name of a connected or disconnected head. The name appears in the **ROBOT NAME** column. To change the head’s name:

1. Select the row for the head.
2. Click or tap in the box representing the name of the head.
3. Enter the name for the head.

Assigning heads to user(s)

A head can only be used by a user, if it is assigned to the user. Assign a head to the user by selecting the user from the drop-down list.

Removing a head

To remove a head, click the appearing **remove** button on the head’s row.

Editing network settings on the head

On the NETWORK SETUP page, only the disconnected (grey) head’s IP address is editable. Only when the head is connected, can the network settings be changed on it.

Select a robot that is connected (green) and click in the **IP ADDRESS** box.
Use the appearing dialog box to change the IP settings of the robot. Your system will also automatically update its local reference address, so you won’t lose the connection to the edited robot.

Enter the **IP Address**, **Subnet Mask**, and **Default Gateway**. These are settings of the robot, not just the references in MHC Client. By changing these, you will override the settings on the robot.

![EDIT ON ROBOT](image)

Note
You must be logged in as Administrator to change network settings on the head.

Adding users

By default, there is one User account added to the system. However, if you require you can add more Users. To do this:

1. Click/tap **Settings** () > **User**.
2. Click/tap **ADD USER**.
3. Enter the username and password that you want to assign to the user.
4. Click/tap **Save**.
Once user(s) are added, the heads each of them can see can be assigned.

Changing the Server IP address

By default, if the MHC Server and Client are running on the same PC, the Server IP address is set to 127.0.0.1. However, if the MHC Server is running on a PC other than that of the MHC Client, specify the server IP address when you start the MHC Client.

Logging in as a User

Once robots are added, accounts are created and robots are assigned to users, log out of the Administrator login and log in as a User.

The default user credentials are:

- username: Studio
- password: Studio
Chapter 2 Main page

Using the Main page

The following figure shows the controls available on the Main page.

Home button

To home the Pan and Tilt axes, click/tap the Home () button on the Main page.

Settings menu

You can navigate the different sections or pages of MHC using the Settings menu. To display the Settings menu, click the Settings () button.
Head selection

The tabs on the page represent the heads that you can view and control using the MHC client. You can select them for operation, setting presets or defining moves.

Selecting a head

You can select an available head by clicking or tapping on it. The selected head appears as green tab, whereas any other head(s) that are connected on the network but not selected appear as light-grey tabs. Heads that are not powered up or not on the network appear as dark-grey tabs.
Presets

You can store the position of the head as a preset and later make it to go to a recorded position (this motion is called Goto). When storing a position, all the axes will be stored. A preset button is faded when no position is stored in them.

Storing a position as a preset

Use the following steps to store a new position or change an existing position in a preset button:

1. Use the controls to go to a head position of your choice. Ensure that the Zoom and Focus axes are in correct positions.

2. Get into store mode by clicking/tapping on the **STORE** button under the preset buttons. You will see red borders around the **STORE** button and the preset buttons, indicating that the preset buttons can be selected to store your current head position.

3. Use the joystick controls to take the head to a new position. Alternatively you can use the current head position.

4. Click/tap on the preset button to store the current head position.

Activating a preset

To activate a preset you simply click/tap on the preset button. A green border will appear around the preset and the head will move to the preset position.

If a Goto is in progress, you can immediately stop the movement by clicking/tapping the red **STOP** button. The speed of the robot moving...
into preset positions can be adjusted in the Preferences tab. For more information, refer to Chapter 4 Goto Speed on page 36.

Editing a preset button

You can assign a name and add a picture to the preset button. To do so:

1. Click/tap the EDIT button.
2. Click/tap the preset button that you want to change.
3. Enter the new name. Click and browse to the graphic to be assigned to the button.
4. Click/tap FINISH EDITTING.

Moves

You can also create moves between any two preset positions to be achieved in the specified time interval.

1. Click/tap the EDIT button.
2. Click/tap the move button that you want to set.
3. Click/tap A in the move button. Notice that the A icon begins to flash, indicating that it can be set.
4. Click/tap a preset button to assign that to A position.
5. Click/tap **B** in the move button.

6. Click/tap a preset button to assign it to the **B** point.

7. Enter the time you want the move to complete in. Optionally, you can also assign a name to the move.

8. Click/tap **FINISH EDITTING**.

Activating a move

Like activating a preset, to activate a move, you simply click/tap on the move button. A green border will appear around the preset and the head will move first to **A** point.

Click/tap the **B** point. The head moves to the **B** point in the specified time. A green border appears around the active move and preset button.

If a move is in progress, you can immediately stop the movement by clicking/tapping the red **STOP** button. The speed of the robot moving into preset positions can be adjusted in the **Preferences** tab. For more information, refer to Chapter 4 **Goto Speed** on page 36.
Chapter 3 **Robot Settings Page**

The Robot Settings page is a collection of engineering type displays related to the head. They are separated into pages for each head assigned to the user and indicated with selectable tabs near the top.

Selecting different robots

You’ll find the name and number of the currently selected robot in the header of the page in green. With the green arrow buttons on the side of the header, you can browse through all of your robots, while staying at the same robot settings sub-section. (For example, you want to change the same parameter on all of your connected robots.)
Axes tab

Use the Axes tab to store the settings for all the axes of the head. You can select the axis you want to set up at the top of the page.

After setting the options, when you click **Apply** the settings are saved in the RAM of the head and are volatile. However, when you click **Save** after applying the settings, they are saved in the flash memory of the head and are permanent until you modify and save them again.

Motion settings

![Motion settings interface]

Speed limits

Set the **Maximum Velocity** to limit the head’s maximum speed to a safer setting. **Maximum Acceleration** sets how quickly (or slowly) the head attains a speed.

Soft limits (Min-Max Positions)

You might need to restrict the range of movement of the robot in some cases.
If there is limited space for the robot, you must avoid collisions to the surrounding objects. You can keep the view in a certain field for easier operation.

Minimum and **Maximum Positions** can be set, the unit is degrees. The recommended way to set these values, is to slowly approach the desired limit while carefully watching the robot. Once satisfied with the position, read the value over the joystick control and use that number as the soft limit for one end of the desired track. Note that while the head tries to store the modified settings, it disconnects for a few seconds and does not accept any command.

For Homing to be accurate, these values must be set correctly.

Change of Acceleration

Use this setting to smoothen the head movements and make them less jerky. You can set it to a value between 0 and 1.

Scaling and direction

Scaling defines the ratio between your manual controls and the real movement of the robot. This value is usually already set.

You can reverse the direction for the selected axis by inverting the value in the text field. To do that add or remove the minus sign (-) in the beginning of the number to invert the control of the axis.

Backlash offset

This setting compensates for backlash in the motor during Goto moves and manual control.

Override and restore limits

You can override the set limits by clicking/tapping the **OVERIDE LIMITS** button. Doing this will display a red border around the limits that will be overridden. Use this option to perform certain checks on the settings or whilst troubleshooting axes movements. After you have finished, ensure that you click **RESTORE LIMITS** to restore the limits for safer head movement.

Maximum Deceleration

This would set how quickly (or slowly) the head would slow down.
Change of Deceleration

Use this setting to smoothen the head movements when slowing down and make them less jerky. You can set it to a value between 0 and 1.

Homing settings

The process of Homing or Zeroing, both meaning the same, is used to let the computer know exactly where each axis is. The process usually involves moving each axis to a known point, either by the user or MHC, and referencing from that known point. The accuracy of this depends on how exactly that known point can be sensed by the user or computer. Once zeroed, an axis can be controlled to not hit its limits of travel, and can be used to provide accurate Target Tracking information. When the computer powers up, it assumes that all axes are at zero and before a move is shot it is a good idea to Zero all the axes.

Basic principle

When an axis is zeroed by the computer, it is moved in a certain direction set by the Homing Velocity value until it reaches a sensor, once the sensor is detected, the axis slows down and stops. If the sensor is not detected within a certain time (Homing Time), then the zeroing will stop and an error will be reported. Once the computer has stopped on a sensor, it moves the motor slowly away until the sensor can no longer be detected and this point is used as a reference point to zero the axis. The axis is then moved further away from the sensor by an amount set in the Homing Offset value to its standard Zero point and then the axis position is set to 0.0.

Types of Homing

Controllers usually offer two different ways to Home the axes: an automatic method and a manual method:

- In the automatic method, MHC moves the axes to the home positions that are built into the hardware and then assigns these positions as the zero points for the axes. This is for Pan, Tilt, and Roll axes on the head. The Focus and Zoom axes having end-stops are Homed differently by MHC but are done automatically.

Click/tap the HOME button to home the selected axis.
In the **manual** method, while observing the position of the axis, use the controls to take the axes to an end point and then click/tap **DIRECT ZERO**. Conventionally **Focus** is zeroed at **infinity** and **Zoom** is zeroed at **wide angle**.

Homing Style

![Homing Style](image)

This setting depends on the type of the motor of the head. The default setting of this field is set for your head so you don’t need to alter Homing Style. However, if you need to set it again, contact MRMC to know the Homing Style.

Homing Velocity

The speed at which the axis will seek its reference point (The direction is set by the sign). This should be set low at first. It is in display scaled units just like the maximum velocity.

Homing Time

This setting determines the time allowed to look for the home position before timing out.

Homing Offset

Once a reference point has been properly located, the axis will move a given distance from this point back to its normal zero position, this is known as the **Homing Offset**. This is useful for making small adjustments to an existing zero.
Enabling and disabling the axis

You can disable an axis when you want to pass control of the axis such as Iris to a separate controller. Or you can enable the axis if it has tripped for some reason. The status of the axis is shown in the centre.

Stopping the head

Use the STOP button to stop the head movement.

Test the axis with manual control

You can test your axis settings with the joystick control at the bottom. The Current Position of the axis is shown above the joystick control.

Motor settings

Use the options in this area for settings related to the motor for the axis. Motor type depends on the type of motor that the head uses for that axis. Note that this value is fixed based on the type of head you are using and was selected in the Network Settings page in the Administrator login.

Save and apply settings to the head

To save and apply the settings to the robot, use the two buttons in the top right corner.
Lens tab

Settings in the **Lens tab** stores information relating to the individual lenses characteristics, such as its focal length and throw of the manual Focus ring so that the system knows which lens is attached. These settings are used when you are using an external tracking system or when you need to control the camera lens in the robot in a more advanced way. A tracking system requires Focus and Zoom axes to keep the moving target in focus and in frame without apparent change in target size. However, the relationship between Focus motor position and target distance, and Zoom motor position and focal length is not linear. Therefore, the Zoom and Focus axes need to be linearised or calibrated allowing the head to control the Focus axis in terms of target distance and the Zoom axis in terms of focal length.

For details on setting up a tracking system using MHC, refer to Chapter 3 **Polycam® tab**.

Linearise Zoom button

Linearise Zoom is a toggle button that allows you to enable Zoom linearisation during Goto moves, using the parameters shown in the table.
Importing lens settings

Use the **IMPORT** button to populate a previously saved lens profile on the Lens tab. Note that any value changed will be stored on the head immediately. Normally, as long as you are using the same lens on the head, you will not need to change this.

![Import Lens Settings](image)

Exporting lens settings

You can save the current populated field characteristics in a lens configuration file on the local disk. In other words, clicking the **EXPORT** button will save the current values to the local disk.

To export a lens configuration file:

1. Change the required settings on the Lens tab.
2. Click **EXPORT**.
3. Select one of the existing lens configurations. Rename the configuration.

4. Click EXPORT.

![EXPORT button]

Note
For the Lens calibration settings to work, you should have already set the soft limits in the AXES tab.

Infinity offset
Before calibrating the Focus axis, it is important that the axis is correctly zeroed. Sometimes, the Focus axis might not zero at infinity. In this case, set up the zeroing to where you want it to go and zero the lens, then move it to Infinity, and use the reading over the Focus axis control on the Main page to store this distance as the Infinity Offset.

Lens Focal Length
Specify the focal length of the lens. If the focal length of the lens is not fixed, then use a number in the middle of the focal length range of the camera.

Sensor Width and Height
Specify the Sensor Width and Sensor Height for the sensor of the lens.
Use Pan to Calibrate FOV

When using pan and tilt along with Zoom, a small movement in the pan axis on narrow zoom can result in greater shift in FOV than the same movement in pan axis on wide zoom. Therefore, the Zoom axis might need to be scaled to avoid such shifts. Specify whether you want to use Pan to calibrate FOV.

Focus calibration

To calibrate the Focus axis, you need to specify a linearisation table in which each line contains a Target Distance and a matching Focus Position. The Target Distance is measured in metres, and the Focus Position is specified by using the Focus control. To create the linearisation table:

1. Ensure that the soft limits are set correctly on the AXES tab.
2. Ensure that the Focus ring on the camera is at the minimum position.
3. Click the ADD button to add the first line as the Target Distance of infinity and Focus Position of 0.0.
4. The next value must be in increasing Focus position and decreasing target distance:
 4.1 Use the Focus control to drive the Focus Position and type the Target Distance in the box.
 4.2 Click the ADD button.
5. The third or final position must be the maximum position that you set as the soft limit in the Axis tab. Use the marking of the lens to decide how many entries you add in the translation table. Normally, you would add about three entries for Focus linearisation.
Zoom linearisation

By entering in the MHC a few Zoom motor positions and the their respective focal lengths, the software can work out for any desired focal length what the Zoom motor position should be. This means that you can plot a move on the Zoom axis in terms of focal length, and the zoom will be driven to change the focal length in a smooth manner. Normally the focal length (or field of view) change does not move steadily with a constant movement on the Zoom lens.

To linearise the Zoom axis, you need to specify a linearisation table in which each line contains a **Focal Length** and a matching **Zoom Position**. The Focal Length is measured in millimetres, and the Zoom Position is specified by using the Focus control. To create the linearisation table:
1. Ensure that the soft limits are set correctly for the Zoom axis on the AXES tab.

2. Ensure that the Zoom ring on the camera is at the minimum position (at widest zoom).

3. Specify the focal length for the widest zoom.

4. The next value must be in increasing Zoom position and respective focal length:

 4.1 Use the Zoom control to specify the Zoom Position and type the Focal Length in the box.

 4.2 Click the ADD button.

5. Use the marking of the lens to decide how many entries you add in the linearisation table. Normally, you would add about 3 to 7 entries for Zoom linearisation.

6. The last entry must correspond to the upper travel limit of the Zoom axis.

Polycam system

Polycam is a system containing multiple heads configured for fully automated subject tracking for broadcast or monitoring. A Polycam system uses external data feed from a source (for example, ChyronHego) and the cameras on the MRMC heads are set to trigger or record the target. The system can be integrated with Pod or AFC-100 heads.
Polycam® tab

- **System with which the network link is established**
- **IP address and port number of the system that the head is communicating with**

Dimensions of the field

A and B points

PID controller settings

Source

The name of the system that is the source of data for the camera. In other words, if the head is receiving data from an external source.

Master Head

The head that you want to set as the master head. This is useful when you are player tracking and have the Autozoom on, the framing on the master head will be automatically used by all the other heads.

Pitch length and Pitch width

Length and width of the football pitch.
Height Offset

On a football field, height offset is how far off the ground the heads should target. If height offset is set to zero, the tracking system will target ground level. A value of 1m is usually used, as this is about waist height of a football player.

PID controller settings

A PID controller is a control loop feedback mechanism. This is used to fine tune the robot’s response to the incoming tracking data.

Each axis of the head has a value for:

- **P** (Proportional) accounts for present values
- **I** (Integral) accounts for past values
- **D** (Derivative) accounts for possible future values

The values entered are used by the PID controller to continuously calculate the required velocity of the axes to keep the target in frame. Changing these values will affect the smoothness and accuracy of tracking.

Head settings

IP settings of the source

Specify the IP address and port number of the incoming connection of the data from the external system. Click CONNECT.

Set A and B points

Use the SET A and SET B buttons to specify the range of physical travel of the head movement. Point A is the angular position in the middle of the goal post of Team A and Point B could be the angular position in the middle of the goal post of Team B. These positions along with the length of the football pitch and height offset will enable the camera to calculate the relative position of the subject on the field.
7. Click **SAVE**.

8. Use the **GOTO A** and **GOTO B** buttons to test the settings specified.

Tools tab

The TOOLS tab allows resetting of the head and exporting and importing MHC settings.
Tools tab for Pods

When the Robot Type is set to Pod in MHC, the tools tab contains additional button, as below:

![Tools Tab for Pods](image)

EXPORT ROBOT SETTINGS

Use this button to store all the settings in MHC to an XML file which you can import later. This can be used to copy settings to another robot or save the factory settings to be restored later.

1. Clicking the button will open a dialog box, enter the name of the XML file.
2. Click **Save**.

Reset Robot

Clicking **Reset Robot** resets the axes (Hex) board in the head. Use this option when the camera has crashed/frozen or a power cycle is required.

IMPORT ROBOT SETTINGS

Use this button to import MHC settings from an XML file.

![Import Robot Settings](image)

Reset Camera (Pod only)

Clicking **Reset Camera** resets the Nikon camera as-though you power-cycled it.

Camera Direct Connection Toggle (Pod only)

Resets the camera to be connected to the PC via USB.

TenPin Init (Pod only)

Clicking **TenPin Init** reinitialises the TenPin board.
Chapter 4 Preferences Page

This screen provides a general overview of the speed and soft limits set for various axes. The limits set in the Preferences page are saved in the local disk and not stored on the head (unlike those in the Robot Settings page), thus providing a faster way of setting limits.

Controlling axes’ speed

Use either the Master Manual Speed control or individual axis speed controls to specify how fast you want the axes to move.

Max. Limit and Min. Limit

The allowed range of travel of any axis can be set up so that it does not exceed certain limits of travel. There are 2 limits, one is the Minimum Limit and the other is the Maximum Limit. Obviously, the minimum limit is the lowest number to which the axis can go and the maximum limit is the greatest limit to which it can travel. These limits are checked at run time to see that the move does not exceed the allowed limits of travel.
You can also disable the limits by clicking the **Clear** button. To set a Min. Limit and Max. Limit for an axis:

1. Use the manual control on the Main page for the head to reach the desired **Position** that you want to set as **Min. Limit**.
2. Click the **SET** button for that limit.
3. Similarly, use the manual control for the head to reach the desired position that you want to set as **Max. Limit**, and click the **SET** button.

Goto Speed

The value in this field will be used for the head movement to go directly to the **Goto points**.

Invert

Use this button to invert the direction of the control for the axis.
Appendix 1 Troubleshooting

Typical symptoms, causes, and actions

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Cause and/or action</th>
</tr>
</thead>
<tbody>
<tr>
<td>The head did not appear connected in MHC</td>
<td>Check that all cables are connected, and all units have power.</td>
</tr>
<tr>
<td>The LEDs on the head did not light up.</td>
<td>Check you have added the correct IP address of the head in MHC.</td>
</tr>
<tr>
<td></td>
<td>If you have connected more than one heads, connected the MRMC system to another local network, or moved the head between networks, check that correct addresses have been entered in MHC.</td>
</tr>
<tr>
<td>A ‘!’ appears with the head icon in the MHC Main screen.</td>
<td>Click/tap the spanner() icon appearing below the head icon to allow MHC to correct the error.</td>
</tr>
<tr>
<td>Tracking is not accurate</td>
<td>Ensure that the PTA is installed perfectly levelled to the ground. Ensure that you have checked this with spirit level.</td>
</tr>
<tr>
<td>While tracking, the camera is pointing in the wrong direction.</td>
<td>The Pan axis must move to the left when position is moved positively. If it is incorrect, then scaling for the axis will need its sign changing.</td>
</tr>
<tr>
<td></td>
<td>The Tilt axis must move up when position is moved positively. If this is incorrect, then scaling for the axis will need its sign changing.</td>
</tr>
<tr>
<td>The controls are not moving the head or the head doesn’t appear to be communicating.</td>
<td>• Click the Reset Robot button in the Tools tab.</td>
</tr>
<tr>
<td>Symptoms</td>
<td>Cause and/or action</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Camera controls are not responding.</td>
<td>• Click the Reset Robot button in the Tools tab.</td>
</tr>
<tr>
<td></td>
<td>For Pods:</td>
</tr>
<tr>
<td></td>
<td>• Click the TenPin Init button in the Tools tab.</td>
</tr>
</tbody>
</table>
Appendix 2 LiveView Setup

MHC Video Feed on Pods

Pods have the video feed to MHC set up by default and do not require the user to do the same. The Pod has an IP camera built in at the back which has a small Web camera that looks into the viewfinder of the DSLR in the Pod. This IP camera is connected to a hub at the back of the Pod along with the DSLR and the Hex board. The IP camera thus takes the video feed from the DSLR via Ethernet and transmits it to MHC though the umbilical.

Setting up LiveView on AFC 100

Live SDI video stream on AFC 100s can be sent to MHC via a HDMI video encoder which converts SDI input into an IP stream that is web managed and can be viewed over LAN or public Internet. To set up live feed on MHC using an AFC 100:

1. Connect the HD video encoder to the network. Ensure that your PC on which you want to view that video feed from the head is on the same LAN as the head and the encoder.

2. Open the encoder’s web page in the Web browser and note the rtsp address.
3. Copy this URL in the VLC player to test if you are able to view the video feed from the camera on the head.

4. To view the video feed in MHC client, navigate to the MHC Client folder on the PC and open the `config.ini` file.

 Note

 The number with the `VideoSourceOverrideUrl` field corresponds to the head number of any user who logs on to this client and is not the server’s global index.

5. Copy the rtsp address from the encoder Web page to the `VideoSourceOverrideUrl` field.

   ```
   [Video]
   VideoSourceOverrideUrl1=rstp://10.44.25.67:554/ext
   VideoSourceOverrideUrl2=
   VideoSourceOverrideUrl3=
   VideoSourceOverrideUrl4=
   ```

 If you are receiving an NDI feed instead, change the `NDIEnabledCamera` field to `true` and add the NDI URL from the desired source.

6. Save the file and close.

7. Log in to MHC Client as a user. You should be able to view the video feed in the Main page.
Appendix 3 Controller Options

Additional controllers can be integrated to the PC running MHC Clients for easier control of the heads. These are plug-and-play devices and do not require any additional software.

MRMC USB Joystick Controller

- Manual control speed
- Preset 2
- Preset 1
- Store Preset
- Preset 5
- Preset 4
- Play a move
- Trigger
- AutoFocus toggle
- (click) Shutter release
- (left/right) Pan
- (up/down) Tilt
- (rotation) Roll
- Pan direction
- Tilt direction
- Zoom direction
- Head select
- Preset 3
- Focus closer
- Preset 6
- Focus further
- Emergency Stop
- Zoom
Xbox 360 Controller

- Previous camera
- Next camera
- Pan/tilt
- Trigger (click)
- Focus towards infinity
- Portrait mode on
- Focus towards minimum
- Portrait mode off
- Preset 1
- Preset 2
- Preset 3
- Emergency Stop
- Click (Lock Roll)
- Roll (left/right)
- Zoom (up/down)
- AutoFocus on/off
- Not assigned
- Store Preset
- Trigger
Broadcast Panel controls

1. E-stop
2. Screen for messages
3. Reserved for future use
4. Enable, disable or change direction of axes
5. Master Speed for all controls
6. Head selection
7. Focus
8. 16 PRESETS for recording and playing back static camera positions
9. Telephoto zoom
10. Wide angle zoom
11. Stop the move
12. Home the head
13. Store a preset
14. Camera head direction and position joystick
Joystick Panel

1. Speed
2. IRIS
3. E-stop
4. Screen for messages
5. Back
6. Head selection
7. Focus
8. Auto Focus
9. Telephoto zoom
10. Wide angle zoom
11. Presets
12. (left/right) Pan
 (up/down) Tilt
Appendix 4 Glossary

Disable
To disable an axis is to click the Disable button on the Robot Settings page screen to get the motor to disable and not respond to user control.

Enable
To enable an axis is to click the Enable button on the Robot Settings page screen to get the motor to turn on and hold its position under computer control. Only if the axis is enabled will it respond to any user controls in MHC. In some lens types, if this works, then the motor is said to be engaged.

Homing (See also Zeroing)
A process whereby the exact position of an axis relative to a fixed reference point is established. In this way the axis can know where its ends of travel are, and thereby avoid hitting them.

Homing Offset
A small distance by which the axis would move away to its normal zero position.

Zeroing
Process whereby an axis is moved to a specific point in its travel where its position is determined to be 0.
Index

A
axis
 Current Position 22
 disabling 22
 enabling 22
B
Backlash offset 19
C
 Camera Direct Connection
 Toggle 33
 Change of Acceleration 19
 Change of Deceleration 20
 controls 43
D
Disable 45
E
ENABLE 4
Enable 45
EXPORT ROBOT
 SETTINGS 32
F
Focal Length 27
Focus calibration 26
 FOCUS control 43, 44
 Focus Position 26
G
Goto Speed 36
H
 Head
 Stopping 22
 Head selection 12
 Height Offset 30
 Home Zeroing
 AFC 3
 Pod 5
 Homing 3, 20
 changing lenses 4
 Types 20
 Homing Offset 21, 45
 Homing Style 21
 Homing Style 21
 Homing Time 20, 21
 Homing Velocity 20, 21
 Homing, see also Zeroing 45
I
IMPORT button 24
IMPORT ROBOT
 SETTINGS 33
Infinity offset 25
L
Launching MHC
 Admin 5
Lens Focal Length 25
Lens settings
 Exporting 24
 Importing 24
Lens tab 23
Limits
 Maximum 35
 Minimum 35
Linearise Zoom 23
LiveView
 Setup 39
M
Master Head 29
 Master Manual Speed 35
 Maximum Acceleration 18
 Maximum Deceleration 19
 Maximum Velocity 18
 Minimum position 19
Motor type 22
O
Override limits 19
P

PID controller settings 30

Pitch length 29
Pitch width 29
Polycam system 28
Position 27

PRESets buttons 43

R

Reset Camera 33
Reset Robot 37, 38
Reset Robot 33
Restore limits 19

S

Scaling 19
Selecting heads 17
Selecting robots 17
Sensor Height 25
Sensor Width 25
Set A 30
SET B 30
Soft limits 18
Source 29

IP settings 30
Stopping the head 22

T

Target Distance 26
TenPin Init 38

TenPin Init 33

Z

Zeroing 45

ZOOM control 43
Zoom linearisation 27
Zoom Position 27
Zoom Related Scaling 26
Notes