MHC (DARTS) V2.5

Quick Start Guide

Product code: MRMC-1544-25
MHC (Darts) v2.5 Quick Start Guide

Product code: MRMC-1544-25

© 2019 Mark Roberts Motion Control Ltd. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated by any means — graphical, electronic, or mechanical — including photocopying, recording, taping, or storage in an information retrieval system, without the express written permission of Mark Roberts Motion Control.

Although every care has been taken to ensure that the information in this document is accurate and up to date, Mark Roberts Motion Control continuously strives to improve their products and may make changes to the hardware, firmware, and software described in this document. Mark Roberts Motion Control therefore cannot be held responsible for any error or omission in this document.

All product names mentioned herein are the trademarks or registered trademarks of their respective owners.

<table>
<thead>
<tr>
<th>Contact information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark Roberts Motion Control Ltd.</td>
</tr>
<tr>
<td>Unit 3, South East Studios</td>
</tr>
<tr>
<td>Blindley Heath</td>
</tr>
<tr>
<td>Surrey</td>
</tr>
<tr>
<td>RH7 6JP</td>
</tr>
<tr>
<td>United Kingdom</td>
</tr>
<tr>
<td>Telephone: +44 (0) 1342 838000</td>
</tr>
<tr>
<td>E-mail: info@mrmoco.com (sales and general enquiries) support@mrmoco.com (customer support)</td>
</tr>
<tr>
<td>Web: www.mrmoco.com www.mrmocorentals.com</td>
</tr>
</tbody>
</table>
Contents

Chapter 1 Getting Started with MHC .. 1

MHC Overview... 1
Powering up a head and the PC ... 1
Changing system configuration and network settings...... 2
 Launching MHC as Admin .. 2
Network setup .. 4
 Adding heads.. 5
 Adding the Type of head.. 5
 Changing a head’s name .. 6
 Assigning heads to user(s) .. 6
 Removing a head .. 6
 Editing network settings on the head 7
 Setting up video feed from the camera 8
 Adding users ... 8
 Logging in as a User .. 9
 Testing head connectivity ... 9

Chapter 2 Main Page... 11

Settings menu ... 12
Presets.. 12
 Storing a position as a preset..................................... 13
 Activating a preset ... 15
 Adding a custom name to a preset button............... 16
 Deleting a preset ... 16
Settings menu ... 20
Presets.. 20
 Storing a position as a preset..................................... 21
 Activating a preset ... 23
 Adding a custom name to a preset button............... 24
 Deleting a preset ... 24
Stop button.. 25
Status button.. 25
Zoom button... 26
Chapter 3 Robot Settings Page (Engineers type users only)...... 27

Selecting different robots .. 27
Axes tab .. 28
 Motor settings ... 28
 Motion settings ... 29
 Speed limits .. 29
 Soft limits (Min-Max Positions) ... 29
 Change of Acceleration ... 30
 Scaling and direction .. 30
 Backlash offset ... 30
 Override and restore limits ... 30
 Change of Deceleration ... 31

Home Zeroing .. 31
 Homing settings ... 31

Types of Homing .. 32
 Homing Style .. 33
 Homing Velocity .. 33
 Homing Time ... 33
 Homing Offset ... 33

Homing when changing lenses ... 34

Enabling and disabling the axis ... 34
 Stopping the head .. 34
 Test the axis with manual control ... 34

Save and apply settings to the head ... 35

Lens tab .. 35
 Linearise Zoom button ... 36
 Infinity offset .. 36
 Lens Focal Length .. 36
 Sensor Width and Height .. 36
 Use Pan to Calibrate FOV ... 36
 Focus calibration ... 36
 Zoom linearisation .. 37
 The last entry must correspond to the upper travel limit of the Zoom axis 38

Exporting lens settings ... 38
 Click EXPORT ... 39
 Importing lens settings ... 39

Tools tab ... 40
 Tools tab for Pods .. 41
 EXPORT ROBOT SETTINGS .. 41
 IMPORT ROBOT SETTINGS ... 42
Chapter 4 Preferences Page .. 45

- Master Manual Speed ..45
- Goto Speed..46
- Individual axis speed control..46
- Max. Limit and Min. Limit ...46
- Invert..46
- Homing..46

Chapter 1 Troubleshooting ... 49

- Typical symptoms, causes, and actions49
Chapter 1 Getting Started with MHC

MHC Overview

Multi-Head Controller, or MHC, is software by Mark Roberts Motion Control used to control the MRMC camera heads via Ethernet. It gives you a smooth, precise and real-time control over a multitude of MRMC robotic heads at the touch of a button from a single workstation. You can also connect additional controls via USB, such as a Joystick Controller, to the PC running MHC.

You launch the MHC Server first and the MHC Client, which can run on the same or different PCs.

Note

MHC is configured by MRMC for the type and number of heads, the lens motors used and the lens types as delivered. This includes network settings and names for each head, configuring homing for each robot axis and lens motors (if supplied), setting the axes soft limits and scaling for the heads supplied. These settings do not need to be changed. This Quick Start Guide details the changes to the settings that can be made by the Administrator and the User, if needed.

For more information on how to change network settings, refer to Changing system configuration and network settings on page 2. For more information on how to change robot settings, refer to Chapter 3 Robot Settings Page (Engineers type users only).

Powering up a head and the PC

1. Cable together and power up all heads including camera and lens motors.

2. Launch MHC Server by double-clicking/tapping the Desktop icon.
3. Launch MHC Client using the double-clicking/tapping the Desktop icon.

4. Log in to MHC Client using the default:
 username: **operator**
 password: **password**

5. The MHC Main page appears.
 For a complete description of the controls on Main page, refer to Chapter 2 **Main Page**.

6. You should be able to move the robot now using either the on-screen controls or the joystick if you have one connected.

Changing system configuration and network settings

Launching MHC as Admin

To change any network setting, you need to be logged in to the MHC Client as the Administrator.

1. Log out of the User login.

2. Log in to the MHC client as Administrator using the following credentials:
 - Username: Admin
- Password: Admin1234

![Log in to MHC](image)

Note
At any time, if you need to restart MHC, perform the following steps:
1. Close the MHC Client and the MHC Server windows.
2. Double-click or tap the MHC Server desktop icon to launch it.
3. Double-click or tap the MHC Client icon to launch it. The MHC Client can be launched on the same or a different computer present on the same network.
Network setup

Heads on the network

Heads not on the network

Note

You can click the Settings () button to display the Settings menu. The tabs in the menu are:

- **NETWORK** – Settings regarding connected/connecting heads
- **USER** – Add/change user accounts
- **POLYCAM WIZARD** – Set up MHC-based polycam system, such as Polycam Player and Polycam Chat. For more detail, refer to Polycam Player Quick Start Guide and Polycam Chat Quick Start Guide.

The Settings menu is different for Administrator and User login. For more information on Settings menu for the User login, refer to Settings menu on page 12.

When you log in as the Administrator, the NETWORK SETUP page launches and provides a general overview of all the heads linked to the system’s network. If you are loading MHC for the first time you probably have 4 robots already set up with addresses from 192.168.1.236 to 192.138.1.239. You can delete these if you want a clean slate to start from.

The two row colours represent the status of the heads:

- **Green**: The head is connected and ready to operate.
• **Grey**: The head with the IP address is not connected with the system’s network or is not powered up.

Adding heads

1. Click the **FIND** button to automatically find the connected head(s). This will show you all the heads that are connected.

2. Select the head’s row that you want to connect to and click the **ADD** button. This will connect the head to the system, and move it to the group of connected heads (the green section).

3. Then, enter the **TYPE** of head and a **NAME** for it. The row for the head stays grey until the head is actually present on the network.

Caution

Do not connect a head with the same IP address as another head on the network. This would cause an IP address conflict and both heads will not function.

Adding the Type of head

The first thing you should do is check what type of head you have and what type of lens you are using. If you are using a serial lens then you would choose one with **Serial** in the name. If you are using external Servo motors then you would choose one **without Serial**. For example, if you
are using a Hex head with Servo motors, choose **AFC-100 HEX** from the **Type** dropdown. It is important to choose the **Type** of head in MHC before entering the robot IP address because once it is connected MHC will try to change it to whatever it currently set to. Ensure that you choose the correct head because if you chose the wrong one, the head either won’t work as expected or won’t work at all.

Changing a head’s name

You can change the name of a connected or disconnected head. The name appears in the **ROBOT NAME** column. To change the head’s name:

1. Select the row for the head.
2. Click or tap in the box representing the name of the head.
3. Enter the name for the head.

Assigning heads to user(s)

A head can be assigned to a specific user or **All** users. Assign a head to the user by selecting the user from the drop-down list. If you select **All** from the User drop-down, then all users who are logged in to the MHC Server can use the head.

Removing a head

To remove a head, click the appearing **remove** button on the head’s row.
Editing network settings on the head

On the NETWORK SETUP page, only the disconnected (grey) head’s IP address is editable. Only when the head is connected, can the network settings be changed on it.

Select a robot that is connected (green) and click in the **IP ADDRESS** box.

Use the appearing dialog box to change the IP settings of the robot. Your system will also automatically update its local reference address, so you won’t lose the connection to the edited robot.

Enter the **IP Address**, **Subnet Mask**, and **Default Gateway** if your network IT manager deems it necessary. To view the video stream from the camera in the robot, specify the URL of the IP stream from the camera in the **Video** box. Clicking **SAVE TO ROBOT** will change the IP address on the head and also tell MHC where to find the head at the new address. If you are changing across to a different subnet, the head will appear disconnected until you change your computer network IP address to the new subnet range. You can also use this dialog box to configure FTP server settings for a Robotic Pod. For more detail on this, refer to the Robotic Pod Quick Start Guide.

Note

You must be logged in as Administrator to change network settings on the head.
Adding users

On the User page, two types of users can be added: Engineer and Operator. Operator type users would have the controls to operate the heads whereas the Engineer type users have additional controls to edit robot and lens settings and also some tools to troubleshoot if an issue.
occurs. By default, there is one User account added to the system. However, if you require you can add more Users. To do this:

1. Click/tap Settings (⚙️) > USER.
2. Click/tap ADD USER.
3. Enter the username and password that you want to assign to the user.
4. Click/tap SAVE.
5. Select the LOGIN GROUP for the new user.

Once user(s) are added, the heads each of them can see can be assigned.

Logging in as a User

Once robots are added, accounts are created and robots are assigned to users, log out of the Administrator login and log in as a User.

The default user credentials are:

- username: operator
- password: password

Testing head connectivity

Logging on as a user will take you to the MHC Main Page. You should be able to move the robot now with either the on-screen controls or the joystick if you have one connected. Check the pan and tilt are working now, just to check if the head is connected properly. For detailed explanation of the controls, see Chapter 2 *Main Page*.
Chapter 2 **Main Page**

The following figure shows the controls available on two types of darts skins.

Both these interfaces, or skins, are technically similar, except the second skin provides more preset options for trebles.

1. **Settings menu**

2, 3 & 4. **Presets**
5. **Stop button**

6. **Status button**

7. **Zoom button**

Settings menu

You can navigate the different sections or pages of MHC using the **Settings** menu. To display the Settings menu, click the **Settings** button.

Presets

You can store the position of the head as a preset and later make it go to a recorded position (this motion is called Goto). When storing a position, all the axes will be stored including the speed settings for each axis. A preset button is faded when no position is stored in them.
Storing a position as a preset

Use the following steps to store a new position or change an existing position in a preset button:

1. Use the controls on the joystick to go to a head position of your choice. Ensure that all axes are in the intended positions. You can control the master speed of the axes on the Preferences tab. For more info, refer to Goto Speed on page 42.

2. Select Settings ()>Robot and select the axis for which you want to change the speed settings.

3. Change the speed settings in Settings ()>Preferences. The Goto speed of the robot moving into preset positions can be adjusted in
the Preferences tab. For more information, refer to Chapter 5 Goto Speed on page 41.

4. Select Settings () > Main to go back to the main page.

5. Get into store mode by clicking/tapping on the STORE button.
The screen will change to a blue theme, indicating that the preset buttons can be selected to store your current head position.

6. Click/tap on the intended preset button and then tap on the STORE button to store the current head position. The screen will return to the green theme.

Activating a preset

To activate a preset you simply click/tap on the preset button. A white border will appear around the preset and the head will move to the preset position.
If a Goto is in progress, you can immediately stop the movement by clicking/tapping the **STOP** button.

Adding a custom name to a preset button

You can assign a name to the preset button. To do so:

1. Click/tap the edit (edit) button.
2. Click/tap the preset button that you want to change and enter the new name. Note that the buttons on the sides of the Darts skin are editable.
3. Click/tap the edit (edit) button again to finish editing.

Deleting a preset

To delete a preset:

1. Click/tap the delete (delete) button.
2. Click/tap the preset you want to delete and click/tap the **delete** button.
The following figure shows the controls available on two types of darts.

Note
Pressing the delete () button will delete the goto move stored in the preset button but not its name whereas deleting/editing the name of a preset will alter its name only but not the goto move itself.
Both these interfaces, or skins, are technically similar, except the second skin provides more preset options for trebles.

1. **Settings menu**
2, 3 & 4. **Presets**
5. **Stop button**
6. **Status button**
7. **Zoom button**

Settings menu

You can navigate the different sections or pages of MHC using the **Settings** menu. To display the Settings menu, click the **Settings** button.

Presets

You can store the position of the head as a preset and later make it to go to a recorded position (this motion is called Goto). When storing a position, all the axes will be stored including the speed settings for each axis. A preset button is faded when no position is stored in them.
Storing a position as a preset

Use the following steps to store a **new** position or **change** an existing position in a preset button:

1. Use the controls on the joystick to go to a head position of your choice. Ensure that all axes are in the intended positions. You can control the master speed of the axes on the Preferences tab. For more info, refer to *Goto Speed* on page 42.

2. Select **Settings () > Robot** and select the axis for which you want to change the speed settings.

3. Change the speed settings in **Settings () > Preferences**. The Goto speed of the robot moving into preset positions can be adjusted in
the Preferences tab. For more information, refer to Chapter 5 Go to Speed on page 41.

4. Select Settings () > Main to go back to the main page.

5. Get into store mode by clicking/tapping on the STORE button.
The screen will change to a blue theme, indicating that the preset buttons can be selected to store your current head position.

6. Click/tap on the intended preset button and then tap on the STORE button to store the current head position. The screen will return to the green theme.

Activating a preset

To activate a preset you simply click/tap on the preset button. A white border will appear around the preset and the head will move to the preset position.
If a Goto is in progress, you can immediately stop the movement by clicking/tapping the **STOP** button.

Adding a custom name to a preset button

You can assign a name to the preset button. To do so:

1. Click/tap the **edit** button.
2. Click/tap the preset button that you want to change and enter the new name. Note that the buttons on the sides of the Darts skin are editable.
3. Click/tap the **edit** button again to finish editing.

Deleting a preset

To delete a preset:

1. Click/tap the **delete** button.
2. Click/tap the preset you want to delete and click/tap the **delete** button.

![Image of MHC (Darts) v2.5 interface]

The button is disabled for all other cameras.

Note

Pressing the **delete** button will delete the goto move stored in the preset button but not its name whereas deleting/editing the name of a preset will alter its name only but not the goto move itself.

Stop button

Use this button, to stop a move.

Status button

The Status button has the following tree states:

<table>
<thead>
<tr>
<th>![Icon]</th>
<th>The head is connected, but has errors, for example an axis is not connected.</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Icon]</td>
<td>The head is connected and all axes ready to use.</td>
</tr>
</tbody>
</table>
The head is not connected.

Zoom button

The zoom (🔍) button is used to tight zoom on the current head position. To zoom in slightly, click/tap the button once. To zoom in all the way, press and hold the zoom button.
Chapter 3 **Robot Settings Page (Engineers type users only)**

The Robot Settings page is a collection of engineering type displays related to the head. They are separated into pages for each head assigned to the user and indicated with selectable tabs near the top.

Selecting different robots

You’ll find the name and number of the currently selected robot in the header of the page in green. With the green arrow buttons on the side of the header, you can browse through all of your robots, while staying at the same robot settings sub-section. (For example, you want to change the same parameter on all of your connected robots.)
Axes tab

Use the Axes tab to store the settings for all the axes of the head. You can select the axis you want to set up at the top of the page.

After setting the options, when you click **Apply** the settings are saved in the RAM of the head and are volatile. However, when you click **Save** after applying the settings, they are saved in the flash memory of the head and are permanent until you modify and save them again. Note that while the head tries to store the modified settings, it disconnects for a few seconds and does not accept any command.

Motor settings

Motor type depends on the type of motor that the head uses for that axis. The motor type must be set to the type of motor on that axis. You will need to refer to the product specification for the exact motor type. For Lens axes you want to check that if you are using a serial lens these say “Focus serial” or “Zoom serial”. If you are using external servo motors then this should say “Servo (PWM)” (or whatever type of motor you have plugged in). You cannot actually change this setting from here but you can see what it has been set to. If it is not correct then you will need to go back to the Admin page to change the Type of head. Note that this value is fixed based on the type of head you are using and was selected in the Network Settings page in the Administrator login.
Motion settings

![Motion settings screenshot]

Speed limits

Set the **Maximum Velocity** to limit the head’s maximum speed to a safer setting. Be sure not to exceed the product specification otherwise unexpected movement will occur. **Maximum Acceleration** sets how quickly (or slowly) the head attains a speed.

Soft limits (Min-Max Positions)

You might need to restrict the range of movement of the robot in some cases. Minimum and Maximum position is the range that the axis is allowed to move.

If there is limited space for the robot, you must avoid collisions to the surrounding objects. You can keep the view in a certain field for easier operation.

Minimum and **Maximum Positions** can be set, the unit is degrees. The recommended way to set these values, is to slowly approach the desired limit while carefully watching the robot. Once satisfied with the position, read the value over the joystick control and use that number as the soft
limit for one end of the desired track. If min and max are both 0 or set the wrong way round then the robot will not move.

Important

One thing is different with a Serial lens axis (i.e. focus, zoom or iris), specifically when using a serial lens. It’s important to have the minimum position set to 0. For the maximum position, move the lens axis to the farthest marker and use this position as max. If the range is outside these values, you can have a situation where MHC thinks the lens is moving and you will see the axis position change however the lens itself is rejecting the input from MHC and just not moving. Only when the axis position falls within the acceptable range will the lens move – it can be different depending on the lens.

Change of Acceleration

Use this setting to smoothen the head movements and make them less jerky. You can set it to a value between 0.1 and 1.0. 1 being no smoothing and 0.1 being the most.

Scaling and direction

Scaling is the ratio between 1 degree on the software and how much the motor needs to be moved. Usually it is best to leave at the factory default setting. If this is set incorrectly the head will either move very slow or very fast, so it needs to be just right which is what the default is.

You can reverse the direction for the selected axis by inverting the value in the text field. To do that add or remove the minus sign (-) in the beginning of the number to invert the control of the axis.

Backlash offset

This setting compensates for backlash in the motor during Goto moves and manual control. Backlash is when you have a bit of “wiggle room” usually between where gears are meshing the axis can be moved a little without the motor actually moving. Normally 0 is the best setting unless you have problems with backlash.

Override and restore limits

OVERRIDE LIMITS will temporarily disable these settings if you want to ensure the robot is not stopped because of a limit problem. Doing this
will display a red border around the limits that will be overridden. Use this option to perform certain checks on the settings or whilst troubleshooting axes movements. After you have finished, ensure that you click **RESTORE LIMITS** to restore the limits for safer head movement.

Maximum Deceleration

This would set how quickly (or slowly) the head would slow down.

Change of Deceleration

Use this setting to smoothen the head movements when slowing down and make them less jerky. You can set it to a value between 0 and 1.

Home Zeroing

The process of Homing or Zeroing, both meaning the same, is used to let the computer know exactly where each axis is. The zero points themselves are not stored in the head or lens when the power is off, so you need to define them at the start of each session, by Home Zeroing the axes. The MHC software physically moves the axes to the home positions that are built into the hardware and then assigns these positions as the zero points for the axes. Once zeroed, an axis can be controlled to not hit its limits of travel, and can be programmed to move to preset positions and provide accurate Target Tracking information.

The method of Home Zeroing depends on the hardware setup and is pre-configured by MRMC.

Homing settings

When an axis is zeroed by the computer, it is moved in a certain direction set by the **Homing Velocity** value until it reaches a sensor, once the sensor is detected, the axis slows down and stops. If the sensor is not detected within a certain time (**Homing Time**), then the zeroing will stop and an error will be reported. Once the computer has stopped on a sensor, it moves the motor slowly away until the sensor can no longer be detected and this point is used as a reference point to zero the axis. The axis is then moved further away from the sensor by an amount set in the **Homing Offset** value to its standard Zero point and then the axis position is set to 0.0.
Types of Homing

Controllers usually offer two different ways to Home the axes: an automatic method and a manual method.

In the **automatic** method, MHC moves the axes to the home positions that are built into the hardware and then assigns these positions as the zero points for the axes. This is for Pan, Tilt, and Roll axes on the head. The Focus and Zoom axes having end-stops are Homed differently by MHC but are done automatically. To home an axis from Robot Settings page:

1. Use > Robot > Axes tab to Home each axis. Select the axis you want to Home at the top of the page.
 - Ensure that the values in the **Minimum** and **Maximum Position**, and **Homing Type** are correct for the lens on the head for the axes you are homing. This is done automatically for Zoom with end stops (Homing type: **Lens**). The Focus is normally Homing type: **Slip**.
 - Check that the Status of the axis is **ON** in the grey box. If it is not, click the **ENABLE** button to turn it on.

2. Click/tap the **HOME** button to home the selected axis.

In the **manual** method, while observing the position of the axis, use the controls to take the axes to an end point and then click/tap **DIRECT ZERO**. Conventionally **Focus** is zeroed at **infinity** and **Zoom** is zeroed at **wide angle**.
Homing Style

This setting depends on the type of the motor of the head. The default setting of this field is set for your head so you don’t need to alter Homing Style. However, if you need to set it again, contact MRMC to know the Homing Style.

Homing Velocity

The speed at which the axis will seek its reference point (The direction is set by the sign). This should be set low at first. It is in display scaled units just like the maximum velocity.

Homing Time

This setting determines the time allowed to look for the home position before timing out.

Homing Offset

Once a reference point has been properly located, the axis will move a given distance from this point back to its normal zero position, this is known as the Homing Offset. This is useful for making small adjustments to an existing zero.
Homing when changing lenses

The values for the Minimum and Maximum Position must be entered for the lens fitted to the head. It is a good idea to label each lens with the Minimum and Maximum Position for Focus axis.

Important

During homing of the Focus axis, the lens ring is driven to each end of the travel. Ensure that the lens motors are sufficiently tight on their matte bars and remain in mesh with the lens gear.

Enabling and disabling the axis

Enable the axis is needed if an axis trips. You will get a message here in the STATUS area. For example, if the current limit is exceeded then the axis will “trip” as a warning that something is wrong. Either the motor is overloaded or there is something wrong in the axis settings. Once you have fixed the problem or to re-test you click the ENABLE button to allow the axis to move.

You can also disable the axis if you don’t want it to move even when the user move the controller. The status will display as “USER” when it is disabled by the user.

Stopping the head

Use the STOP button to stop the head movement.

Test the axis with manual control

You can test your axis settings with the joystick control at the bottom. The Current Position of the axis is shown above the joystick control.
Save and apply settings to the head

To save and apply the settings to the robot, use the two buttons in the top right corner.

Lens tab

Settings in the Lens tab stores information relating to the individual lenses characteristics, such as its focal length and throw of the manual Focus ring so that the system knows which lens is attached. These settings are used when you are using an external tracking system or when you need to control the camera lens in the robot in a more advanced way. A tracking system requires Focus and Zoom axes to keep the moving target in focus and in frame without apparent change in target size. However, the relationship between Focus motor position and target distance, and Zoom motor position and focal length is not linear. Therefore, the Zoom and Focus axes need to be linearised or calibrated allowing the head to
control the Focus axis in terms of target distance and the Zoom axis in terms of focal length.

Linearise Zoom button

Linearise Zoom is a toggle button that allows you to enable Zoom linearisation during Goto moves, using the parameters shown in the table.

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>For the Lens calibration settings to work, you should have already set the soft limits in the AXES tab.</td>
</tr>
</tbody>
</table>

Infinity offset

Before calibrating the Focus axis, it is important that the axis is correctly zeroed. Sometimes, the Focus axis might not zero at infinity. In this case, set up the zeroing to where you want it to go and zero the lens, then move it to Infinity, and use the reading over the Focus axis control on the Main page to store this distance as the Infinity Offset.

Lens Focal Length

Specify the focal length of the lens. If the focal length of the lens is not fixed, then use a number in the middle of the focal length range of the camera.

Sensor Width and Height

Specify the Sensor Width and Sensor Height for the sensor of the lens.

Use Pan to Calibrate FOV

When using pan and tilt along with Zoom, a small movement in the pan axis on narrow zoom can result in greater shift in FOV than the same movement in pan axis on wide zoom. Therefore, the Zoom axis might need to be scaled to avoid such shifts. Specify whether you want to use Pan to calibrate FOV.

Focus calibration

To calibrate the Focus axis, you need to specify a linearisation table in which each line contains a **Target Distance** and a matching **Focus Position**. The Target Distance is measured in metres, and the Focus
Position is specified by using the Focus control. To create the linearisation table:

1. Ensure that the soft limits are set correctly on the AXES tab.
2. Ensure that the Focus ring on the camera is at the minimum position.
3. Click the ADD ∞ button to add the first line as the Target Distance of infinity and Focus Position of 0.0.
4. The next value must be in increasing Focus position and decreasing target distance:
 4.1 Use the Focus control to drive the Focus Position and type the Target Distance in the box.
 4.2 Click the ADD button.
5. The third or final position must be the maximum position that you set as the soft limit in the Axis tab. Use the marking of the lens to decide how many entries you add in the translation table. Normally, you would add about three entries for Focus linearisation.

Zoom linearisation

By entering in the MHC a few Zoom motor positions and the their respective focal lengths, the software can work out for any desired focal length what the Zoom motor position should be. This means that you can plot a move on the Zoom axis in terms of focal length, and the zoom will be driven to change the focal length in a smooth manner. Normally the
focal length (or field of view) change does not move steadily with a constant movement on the Zoom lens.

To linearise the Zoom axis, you need to specify a linearisation table in which each line contains a **Focal Length** and a matching **Zoom Position**. The Focal Length is measured in millimetres, and the Zoom Position is specified by using the Focus control. To create the linearisation table:

1. Ensure that the soft limits are set correctly for the Zoom axis on the AXES tab.
2. Ensure that the Zoom ring on the camera is at the minimum position (at widest zoom).
3. Specify the focal length for the widest zoom.
4. The next value must be in increasing Zoom position and respective focal length:
 4.1 Use the **Zoom** control to specify the Zoom **Position** and type the **Focal Length** in the box.
 4.2 Click the **ADD** button.
5. Use the marking of the lens to decide how many entries you add in the linearisation table. Normally, you would add about 3 to 7 entries for Zoom linearisation.

The last entry must correspond to the upper travel limit of the Zoom axis.

Exporting lens settings

You can save the current populated field characteristics in a lens configuration file on the local disk. In other words, clicking the **EXPORT** button will save the current values to the local disk.
To export a lens configuration file:

1. Change the required settings on the Lens tab.
2. Click **EXPORT**.
3. Select one of the existing lens configurations. Rename the configuration.

Click **EXPORT**.

4. **Importing lens settings**

Use the **IMPORT** button to populate a previously saved lens profile on the Lens tab. Note that any value changed will be stored on the head immediately. Normally, as long as you are using the same lens on the head, you will not need to change this.
Tools tab

The TOOLS tab allows resetting of the head and exporting and importing MHC settings.
Tools tab for Pods

When the Robot Type is set to Pod in MHC, the TOOLS tab contains additional buttons, as below:

EXPORT ROBOT SETTINGS

Use this button to store all the settings in MHC to an XML file which you can import later. This can be used to copy settings to another robot or save the factory settings to be restored later.

1. Clicking the button will open a dialog box, enter the name of the XML file.
2. Click Save.

IMPORT ROBOT SETTINGS

Use this button to import MHC settings from an XML file.

![Import Robot Settings File](image)

Reset Robot

Clicking **Reset Robot** resets the axes (Hex) board in the head. Use this option when the camera has crashed/frozen or a power cycle is required.

Reset Camera (Pod only)

Clicking **Reset Camera** resets the Nikon camera as-though you power-cycled it.

Reset 10-Pin (Pod only)

10-pin board is a special board that MHC uses to access special functions in the D5 camera. Clicking **Reset 10-Pin** reinitialises the 10-Pin board, or resets all the camera functions that are accessible via 10-pin protocol, such as ISO, aperture, focus, white balance, image quality etc.

Change Network Quality (Pod only)

Clicking/tapping this option gives you a message with instructions on how to change the resolution of the imagery from the REP camera. You
might need to do this if your bandwidth is limited and you want to reduce the traffic on the network.

Test Network Quality (Pod only)

This button displays the percentage values of Jitter and Loss in the network.

Environment tab (Pod only)

This tab gives you the information about various environmental factors, such as the temperature of the Pod, moisture in the Pod, and others that allow you to level the Pod. Use this tab to turn the heater and fan on and off.

Note that heater can be switch on and remain on when the fan is switched on. Once the fan or heater is turned on, the icon is blue. The heater can remain on for 5 min, after which it will be switched off automatically.
Chapter 4 Preferences Page

This screen provides a general overview of the speed and soft limits set for various axes. The limits set in the Preferences page are saved in the local disk and not stored on the head (unlike those in the Robot Settings page), thus providing a faster way of setting limits.

Master Manual Speed

The Master Manual Speed control specifies how fast you want all axes to move. Note that this is user dependent that is in case the robot is assigned to more than one user then each user can set this value individually.
Goto Speed

The value in this field will be used for the head movement during presets. Like Master Manual Speed, Goto speed is also user dependent and can be set individually by each user for a given robot.

Individual axis speed control

Individual axis speed controls to specify how fast you want the axis to move. These speeds are set on the robot and if the robot is controlled by many users, it will be set by the user who last controls the axis.

Max. Limit and Min. Limit

The current positions can be stored as minimum and maximum limits for each axis using the SET button. These are user limits and not stored on the head. These limits are checked at run time to see that the move does not exceed the allowed limits of travel.

Note

Ensure that you don’t set minimum limit same as the maximum limit set on the Robot Settings page or vice versa. This will result in the axis not moving at all.

Also, if the limits on this page are outside the range of limits set on the Robot Settings page, then smallest range of travel will be applied.

Invert

Use this button to invert the direction of the input control for the axis.

Homing

You can use the axis Home button to home each axis individually. This button is not available for pan and tilt axes for Pods.
Notes
Chapter 1 Troubleshooting

Typical symptoms, causes, and actions

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Cause and/or action</th>
</tr>
</thead>
<tbody>
<tr>
<td>The head did not appear connected in MHC</td>
<td>Check that all cables are connected, and all units have power.</td>
</tr>
<tr>
<td>In the Network settings, the row for the head is not green.</td>
<td>In the Network Settings page:</td>
</tr>
<tr>
<td></td>
<td>• Check you have added the correct IP address of the head in MHC.</td>
</tr>
<tr>
<td></td>
<td>• Ensure that the Type of robot is correct.</td>
</tr>
<tr>
<td></td>
<td>• Check that the IP addresses of the head and MHC PC are in the same network range.</td>
</tr>
<tr>
<td></td>
<td>• Ensure that two devices on the same network do not have the same IP address.</td>
</tr>
<tr>
<td></td>
<td>If you have connected more than one heads, connected the MRMC system to another local network, or moved the head between networks, check that correct addresses have been entered in MHC.</td>
</tr>
<tr>
<td>A ‘!’ appears with the head icon in the MHC Main screen.</td>
<td>Click/tap the spanner() icon appearing below the head icon to allow MHC to correct the error.</td>
</tr>
<tr>
<td>Tracking is not accurate</td>
<td>Ensure that the PTA is installed perfectly levelled to the ground. Ensure that you have checked this with spirit level.</td>
</tr>
<tr>
<td>Symptoms</td>
<td>Cause and/or action</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>While tracking, the camera is pointing in the wrong direction.</td>
<td>The Pan axis must move to the left when position is moved positively. If it is incorrect, then scaling for the axis will need its sign changing. The Tilt axis must move up when position is moved positively. If this is incorrect, then scaling for the axis will need its sign changing.</td>
</tr>
</tbody>
</table>
| The controls are not moving the head or the head doesn’t appear to be communicating. | • Check that the soft limits are correct; the min and max limits are not set the wrong way around. These limits should be checked both on Axes tab and the Preferences page.
• Click the **Reset Robot** button in the Tools tab. The head will take a few seconds to reconnect after doing this. |
| The axis settings do not appear to be correct | If the axis settings seem to be out of order or you just want to get back to the original settings, then you can reset the settings to “factory default”. This can be done from Server --> Axis. |
| Camera controls are not responding. | • Click the **Reset Robot** button in the Tools tab. |
Notes